
Polymer Bulletin 10, 505-512 (1983) Polymer Bulletin 
�9 Springer-Verlag 1983 

Characterization of Copolymer Chains Based 
on Probabilities of Sequences Longer than Diads 

Marek MaUengiewicz 

Institute of Polymer Chemistry, Polish Academy of Sciences, M. Curie-Sktodowskiej 34, 
PL-41800 Zabrze, Poland 

SUMMARY 

A degree of alternation has been introduced in the paper as a useful 

"one-number" parameter characterizing the mlcrostructure of a copolymer 

chain and replacing the degree of randomness. Based on a concept of alter- 

nation of comonomer units along the macromolecular chain the degree of al- 

ternation can be calculated for experimentally accessible sequences of any 

length. 

INTRODUCTION 

Physical properties of polymers depend among other factors on the 

macromolecular chain microstructure which can be statistically described 

using sequence probabilities (HAM 1964) experimentally obtained predominan- 

tly by NHR spectroscopy (BOVEY 1969,1972, HARWOOD 1972, KLESPER and SIELAFF 

1974, SLONIH and URMAN 1982). At a given level of sequence determination 

a polymer can be shown to be consistent or inconsistent with a given stati- 

stical model. However, there is always the possibility that examination of 

higher sequences may reveal inconsistencies with a proposed model and ambi- 

guities in copolymer characterization may arise. The knowledge of probabi- 

lities for all sequences provides a full description of the chain, never- 

theless, several "one-number" parameters are useful and sometimes suffi- 

cient for a simple characterization of copolymers. Such parameters frequen- 

tly used are: average block length~ run number (HARWOOD and RITCHEY 1964), 

persistence ratio (COLEMAN and FOX 1963a,b), and degree of randomness (YA- 

MADERA and MURANO 1967), The latter is commonly used for characterizing 

sequence distribution in condensation copolymers (YAMADERA and MURANO 1967, 

HAMB 1972, KORSHAK et el. 1973, MATLENGIEWICZ et al. 1979) and was defined 

by YAMADERA and MURANO (1967) as follows: 
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P (AB) P (AB) 
R =  + 

2P(AA) + P(AB) 2P (BB) + P (A'~) 

where: 

R - degree of randomness (B instead R has been used in the original 

paper by YAMADERA and MURANO 1967) 

P(~) = P(AB) + P(BA) (For notation cf. KLESPER and SIELAFF 1974) 

Numerical values of R, ranging from 0.0 to 2.0 ~ provide information 

about the distribution of comonomer units. For a mixture of homopolymers 

R = 0| for a random distribution of comonomer units R = 1.0 and for alter- 

nating chain R = 2,0 , The degree of randomness cannot precisely describe 

a chain because it is calculated using diad probabilities onlyp and even 

for significantly different chalns t identical values of R can be obtained. 

An antepenultimate effect (FRISCH et al. 1965) is a good example of ambi- 

guities which may arise when only diad probabilities are observed. For 

a "blalternating" copolymer chain 

-AABBAAB BAABBAABBAAB BAABB- 

the degree of randomnessp which is equal to 1.0 ~ indicates random distri- 

bution of comonomer units while the chain is highly ordered. Only exami- 

nation of sequences longer than diads can indicate the difference, 

As long as only dlads were experimentally acceslble to investigations, 

the degree of randomness was sufficient to characterize the chain of con- 

densation copolymer. But since NMR spectroscopy provides signals of longer 

sequences, i.e. triads and tetrads (MATLENGIEWICZ and TURSKA 1982) there is 

a possibility to extend the characterization introducing a parameter based 

on the probabilities of higher sequences. 

DEGREE OF ALTERNATION AND DEGREE OF BLOCKINESS 

Let's consider for example the model chains of an equimolar copolymer 

choosen to cover the whole range of degree of randomness from 0.0 to 2.0 

(Figure I), It can be seen from Fig.l that for a given degree of randomness 

it is possible to create several quite different chains. A cyclic chain can 

be taken as a model of indefinitely long polymer chain, because there is 
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no end effect i hence, probabilities of sequences of various lengths can be 

readily calculated from Fig, I as fractions of respective sequences, Using 

the sequence probabilities the conditional probabilities can be calculated 

(KLESPER and SIELAFF 1974), First. second and third order conditional pro- 

babilities calculated for the model chains have been presented in Table I, 

overleaf, 

2 ~ 3 ~ 4 ~ 

6 ~ 

i0 ~ ii ~ 12 ~ 

<> <> 
14 o 15 ~ 16 ~ 

Fig, i Model chains of an equimolar copolymer - 16 A [O] + 16 B [0] 
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Starting from triads and 2nd order conditional probabilities it can be 

noticed that only two kinds of copolymer chain can be clearly distinguished 

giving two opposite limiting cases, namely block sequences, i.e. AAAA and 

BBBB, and strictly alternating sequences, i.e. ABAB and BABAp while the re- 

minder can be regarded as miscellaneousp e.g. AABA, ABBB, etc. Irrespective 

of the length of sequences there are always two, and only two, strictly 

block sequences, and only two strictly alternating ones. The longer the se- 

quences concerned are the greater is the number of miscellaneous sequences 

hence, it seems reasonable to adopt only these four block and alternating 

sequences for a simple characterization of a copolymer. 

It should be noted~ however, that randomness is usually expressed in 

terms of discrepancy from alternation or blockiness. In fact, the degree of 

randomness by YAMADERA and MURANO (1967) should be called degree of alter- 

nation of the first order (AI) since it is based on ist order conditional 

probabilities describing the formation of a purely alternating chain 

R = A 1 = P(A/B) + P(B/A) 

Of course, one can calculate the degree of blockiness (BI) , based on 

ist order conditional probabilities leading to a block chain 

B I = P(A/A) + P(B/B) 

but in this case the numerical values form a reverse scale with respect to 

the former parameter, i.e, B 1 - 0.0 for alternating copolymers; B I = 1.0 

for random copolymers and B I = 2,0 for mixture of homopolymers. To preserve 

the physical meaning behind the numerical values, widely used in literature 

for characterizing the chain microstructure, it seems reasonable to prefere 

the degree of alternationp though both A 1 and/or B I can be used to distin- 

guish a random copolymerp as far as dlad probabilities and Ist order condi- 

tional probabilities are concerned, 

For sequences longer than diads the degree of alternation and the de- 

gree of blocklness of higher orders can be calculated as follows: 

A 2 = P(AB/A) + P(BA/B) 2nd order degree of alternation 

A 3 - P(BAB/A) + P(ABA/B) 3rd order degree of alternation 

o e e o e e e g o ~ t e .  . . . e o e , o B e e e e e e .  

A n = P(ABAB,,,B/A) + P(BABA...A/B) n-th order degree o f  alternation 

n n 
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A = 0 .0  
n 

A = 1.0 
n 

A = 2.0 
n 

for a mixture of homopolymers 

for random copolymers 

for alternating copolymers 

B 2 = P(AA/A) + P(BB/B) 

B 3 = P(AAA/A) + P(BBB/B) 

2nd order degree of blockiness 

3rd order degree of blockiness 

B = P(AA,..A/A) + P(BB...B/B) 
n ~ 

n n 

n-th order degree of blockiness 

B = 0,0 
n 

B = 1,0 
n 

B = 2,0 
n 

for alternating copolymers 

for random copolymers 

for a mixture of homopolymers 

Numerical values of ist, 2rid and 3rd order degree of alternation cal- 

culated for the model chains are presented in Table II. The data obtained 

indicate that degree of alternation of different orders complete each other 

Le. those model copolymers which possess the same A I value but differ sig- 

nificantly in their structure, differ in their degrees of alternation of 

higher order. Therefore, the averaged degree of alternation can be used as 

a useful "one-number" parameter for a simple characterizing of copolymer 

chain 
n 

F .... n-th order averaged degree of alternation n 
n 

F = 0.0 
n 

F = 1.0 
n 

F = 2,0 
n 

for a mixture of homopolymers 

for random copolymers 

for alternating copolymers 

Numerical values of 2nd and 3rd order averaged degree of alternation 

are presented in Table II. It can be seen from this Table that the longer 

the sequences involved are the better is the differentiation between simi- 

lar chains. 
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